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Interdrop coalescence with mass transfer: comparison
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A. Sabonf*, S. Alexandrova, C. Gourdo®, A.K. Chester§

@ Groupe Ecoulements, Transferts de Matiere et de Chaleur, LTP, Dépt GTE, IUT, Universite de Caen, 120 rue de 'exode, 5000BrSag# |
b Laboratoire de Génie Chimique, URA CNRS 192, Ecole Nationale Supérieure d’Ingénieurs de Génie Chimique,
Chemin de la loge, 31078 Toulouse Cedex, France
¢ Laboratory of Fluid Dynamics and Heat Transfer, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands

Received 23 September 2001 ; received in revised form 5 November 2001 ; accepted 12 November 2001

Abstract

The partially mobile, plane-film model developed to describe film drainage and rupture during coalescence in liquid—liquid dispersions
is extended to take account of interfacial-tension gradients generated by mass transfer. The resulting Marangoni forces are predicted to
greatly accelerate film drainage (which in general corresponds to dispersed to continuous phase transfer) and to diminish film drainage in
the negative case. The first model is based on the approximation of constant pressure and interfacial tensions outside the film. The pre-
dictions from this model agrees with observations and available numerical data, in the case of mass transfer from dispersed to continuous
phase. While for mass transfer from continuous to dispersed phase, a second model is proposed, in this case the first model is adapted tc
take account of the location of the region of maximum concentration gradients, which moves radially outwards as a result of the growth
of the continuous phase-concentration boundary layers. At large times, the new model predicts an asymptotic return to the drainage rate
in the absence of mass transfer.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction gible. This is the most important regime from a practical
point of view, full mobility or immobility arising only for

While both the nature and the mechanism of the influence extreme viscosity ratios (Abid and Chesters [5]). The ad-
of mass transfer on drop coalescence in liquid—liquid dis- ditional influence of van der Waals forces, leading to film
persions are accepted (see e.g. Kleczek et al. [1], Gourdonrupture in finite drainage time has been studied numerically
and Casamatta [2]), except Saboni et al. [3], no quantita- in the immobile case (Yiantsios and Davis [6]) and in the
tive models—even approximate ones—appear to have beerpartially mobile case (Saboni et al. [7]). The case of con-
developed. This is perhaps not surprising if one recalls that stant approach velocity of the drops has also been studied
the requisite models in the absence of mass transfer are relin the partially mobile case, with and without van der Waals
atively recent. forces (Abid and Chesters [5]).

For pure systems, numerical studies of the coupled pro- In the presence of mass transfer, a numerical model of the
cesses of drop deformation and film drainage under the drainage of liquid films between drops undergoing a constant
action of a constant interaction force have been carried interaction force has been developed (Saboni et al. [3]). The
out by Yiantsios and Davis [4] in the limits of immobile ~mathematical problem consisting of the coupled equations
and partially mobile interfaces. The term partial mobility is of flow and diffusion in each phase, subject to the boundary
used to indicate that drainage is controlled by the motion of conditions at the interface, together with those provided by
the interfaces (this motion in turn being limited by viscous the interaction characteristics of the drops. The situation
forces exerted by the drop phase), the contribution of the considered is that of partially mobile drainage, under the
Poiseuille flow with respect to the interfaces being negli- action of a constant force and in the absence of van der Waals

forces. Numerical solutions were obtained for both positive
"+ Corresponding author. Tel:33-2-33-77-11-72: and negative values of Marangoni parameter (correqundlng
fax: 1+33-2-33-77-11-78. to solute transfer both to and from the drops) for fixed,
E-mail addressesasaboni@aol.com, Itp@stlo.unicaen.fr (A. Saboni). physically pertinent values of the other parameters, including
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Nomenclature

hcen
Pfiat

hw

hmin

film radius

a/Req

Hamaker constant

parameter defined by Eq. (5)

solute concentration (mass fraction)
C-value adjacent to interface
driving concentration difference for
mass transfer

molecular diffusivity

modified diffusion coefficient
acceleration/deceleration factor
interaction force exerted by one drop
on another

numerically instantaneous acceleratiorn
deceleration factors

instantaneous acceleration/deceleratio
factors predicted by models | and II
force per unit volume of film due,
respectively, to gradients of interfacial
tension, gradients of pressure and
van der Waals forces

film thickness

critical film-rupture thickness
thickness at film center

film thickness at which the drops
become flattened

film thickness corresponding to
Marangoni-accelerated rupture
minimum film thickness

initial film thickness

film thickness, 2, at location where
concentration boundary layers meet
dimensionless rupture thickness
constants of order unity

partition coefficient €4 o/dCo

mass flux through the interface
Marangoni number

film pressure

transformed partition coefficient
Peclet number

radial coordinate

r-value corresponding to maximum
of 9Col/ar

r-value corresponding tbmin

drop radius

equivalent radius, Ry + Ry %)
area of the material element of the
interface

time

time to drain to critical film-rupture
thicknesshc

interaction time of colliding drops
dilation time scale

radial velocity of the draining film

interface velocity

approach velocity of undeformed

portions of drops

z axial coordinate; distance perpendicular
to interface

z dimensionless group determining the

deceleration factor

<C-c

Greek letters

8 concentration boundary layer thickness
m dynamic viscosity

0 density

o interfacial tension

O eff effective interfacial tension
Ao o difference between film and outer region

T shear stress exerted on the interface
) film tension

Subscripts

d pertaining to the dispersed phase

0 in the absence of mass transfer

00 in the bulk phase far from the interface

Superscript
* transformed variable, as defined in the text

a large Peclet number for which the diffusion boundary layer
within the drop is thin, thereby somewhat simplifying the
equations to be solved.

Mass transfer from the dispersed to the continuous phase
has been found to accelerate the process of film drainage
and hence to increase the probability of coalescence during
drop collisions. Mass transfer in the reverse direction re-
tards drainage and reduces the coalescence probability. The
effect of interphase mass transfer on film drainage arises
from the extra (“Marangoni”) forces generated by gradi-
ents of interfacial tension, associated with variations of the
solute concentration over the interface. Thus, if transfer is
from dispersed to continuous phase the thin film separating
the drops rapidly comes to equilibrium with the high solute
concentration in the drop while the interface outside the
film takes on a concentration value intermediate between
that in the drop and in the continuous phase. If, as usually
is the case, the interfacial tension is a decreasing function
of the interfacial concentration, the interfacial tension in the
film will be lower than that outside the film. The resulting
gradient of interfacial tension produces a tangential force
on the interface which accelerates the radial motion of the
film and so reduces the drainage time. If the mass transfer
is in the opposite direction, the interfacial concentration in
the film will be very low and the effect will be reversed.

While the numerical results are encouraging vis a vis the
modeling of coalescence processes in systems undergoing
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mass transfer, it should be emphasized that the devel-
oped theoretical and computational framework concerns
solutes exhibiting no surface activity. In practice, one of
the two phases is almost always aqueous and most solutes
with sufficient affinity to be appreciably soluble in both
phases (alcohols, organic acids, etc.) are amphipathic to
a greater or lesser extent. The resulting surface activity
leads to additional Marangoni effects which always retard
drainage. The net effect adb — C transfer could then
be either coalescence promotion or reduction, depending
on the degree of surface activity of the transferring solute.
While the incorporation of surface activity in the govern-
ing equations is relatively simple, it introduces at least one
further dimensionless parameter. If the simulation of film
rupture is included—as ultimately it must be—the number
of computations required to explore this six-dimensional Fig. 1. Notation for plane parallel-film models.
parameter-space is clearly prohibitively great. Two options
then remain if coalescence is to be modeled as a |Oca|describi_ng c_irainage between colliding drops. The obtained
process within an overall simulation of the two phase flow €XPression is
concerned: 21grka (_d_h) —F, = _a_p )
(&) Compute the drainage time, and thence the coalescence afv dr dr

probabilities, at each point in the system as function of whereh is the film thickness, fdt the thinning rateyq the

local conditions. drop viscosityy the radial coordinate the pressuref, the
(b) Develop approximate models for the drainage time as radial pressure force per unit film volumie, the constant

a function of the parameters concerned and then useof order unity andh is a measure of the film radius related

the simulations as “numerical experiments” to test and to the interaction force by

refine these models.

larger 2
2prdr = n’azg )

At the present time, option (a) is completely excluded F= eq

by limitations in computational power. An example of . o . ] .
option (b) in the four-parameter case is the aim of this Whereoo is a characteristic value of the interfacial tension

paper. and the equivalent radiuReg, is defined by

2 _ 1.1 -

. . Req R Ry

2. Approximate drainage models
whereR; andR, are the radii of the two drops.

We consider two drops of the same Newtonian fluid sus-

pended in another Newtonian fluid, which approach each 2-2- I the presence of mass transfer

other along the line of their centers at a constant force. Var-

ious regimes of drainage may be distinguished depending

on the rigidity and mobility of the interface [8]. Here we

consider only the drainage between deformable partially

mobile interfaces. We consider also that the deformable

part of the drop is very small in comparison with the drop Co — Cd,0 4)

radius. This is not as restrictive as it appears since only for 0= g
gentle collisions is drainage typically rapid enough for coa- oytside the film, howevet will still be given by (Appen-
lescence to occur. So the partially mobile, plane-film model gices A and B):

[8] developed to describe film drainage and rupture during Coo + ¢ + PCq /K
coalescence in liquid—liquid dispersions, is extended to take Co + ¢ = —= 2

2.2.1. The variation of interfacial concentration

Once the film thickness is well beloty, the film con-
centration will tend towards equilibrium with the drop, i.e.
Cq,0 Will tend towardsCq ~, S0 that

()

account of interfacial-tension gradients generated by mass 1+p
transfer. where P is the transformed partition parameter given by
(B.9)
2.1. In the absence of mass transfer Thus interfacial concentration variation from the inside to
the outside of the film is:
In the absence of mass transfer (pure liquid-liquid sys- C3%—Choo AC*

tems), Chesters [8] introduced a parallel-film model (Fig. 1) ACp = (Cglext — (Co)fim = 1+P  1+P (6)
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whereC*, Cj and AC* are defined as the mass transfer. This effect offers a possible explanation
Cq of the fact that the model | predicts complete blockage of

Cc*=C, Ci= < AC* = Cs,oo - C% (7) coalescence by moderate levels of mass transfer from con-

tinuous to dispersed phase, whereas both experiment and

222 Model | numerical simulation indicate merely a moderate increase

In the presence of mass transfer, the variation of speciesin the drainage times. _ _
concentration over the interface engenders a corresponding 1he modified film drainage law is once more obtained by
variation in the interfacial tension. The variation of the in- 'Ntégrating the force balance on a film element with respect
terfacial tension produces a net tangential force per unit tor
area,t, k1ipqga dh 20 n 2A0

(14)
7, = grado (8)
The Marangoni term ®(do/dr), however, is now supposed

The radial force per unit volume of the film is consequently significant only in a narrow range ofvalues in the regions

2gradc 2Ao  2AC} do whereh = hg and its integral is thus given byA% /hs (hs
o= ~“n ~ “ah dce is given in Appendix D), yielding
2AC* d kipga dh 20 2A0
ah(1+ P)dCo h t Req  k2(Dt)
where whereks is a constant in the order of 1. In contrast with
AC* do (12), the Marangoni term in (15) becomes weaker as time
o=- -— (10) progress, drainage tending asymptotically to the rate in the
1+ PdCo
absence of mass transfer.
Fs must be included on the force balance Now integrating with respect tg (15) yields
2ugrky [ dh ap 200 (1 1) 26 2Ac ( t )1/2
—— |=Fy+F,=—+ —— k ——— ==t +— | = 16a
an <dt> Pt = T e W 5 00 ) T Req T k2 \D (162)
Ap 2Ac 200 2Ac or

a +h a Req+h a
(16b)

kipga 20t 2A0 [t \Y?
D

which integrate with respect to(limits of integration are 0 n R_eq ko
and a) to give (model I):
kiptga < dh) 20 2A0

)~ 12
h2 dr ReqJr h (12)

provided thah < ho.

3. Comparison of drainage models | and Il with

Marangoni drainage is seen to dominate (Fg.> F)) if numerical results
h < hy, where
RegAC* 1 do Ao 3.1. Numerical approach
hy=——————— 0f hy=Req| — 13
M 11 P odCo M = Regq (13)

Details of the theory involved in the calculation of the
indicating that extremely small variations in interfacial ten- drainage of partially mobile liquid films between drops un-
sion are sufficient for Marangoni effect to dominate in the dergoing a constant interaction force in the presence of mass

final stages of drainage. transfer are given by Saboni et al. [3]. A brief summary is
given in this paper. The mathematical problem consisting of
2.2.3. Model II: modified film drainage the coupled equations of flow and diffusion in each phase,

The plane film for coalescence under a constant force subject to the boundary conditions at the interface, together
in the presence of mass transfer (model 1) is based on thewith those provided by the interaction characteristics of the
approximation of constant pressure and interfacial tension drops. Numerical solutions were obtained for both positive
in the region outside the film. In reality, the region in which and negative values of Marangoni parameter (corresponding
o changes from a value corresponding to approximate to solute transfer both to and from the drops).
equilibrium between film and drop to an approximately Expressed in terms of transformed variables
constant external value will be that in which the two con-

tinuous phase-concentration boundary layers meet. Since.» _ _ " nt — h = ( a'o )t
the thickness of these layers grows with time, this region Reqa’ Reqa’? Reqitd
will tend to move outside the film, where > hnyin and , a

the term A/ hmin Will then overestimate the influence of ¢ ~ Req
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the equations governing drainage containing four dimen- combination. In the studied cases flattening precedes the

sionless parameters given as onset of Marangoni effects, the thickness of the continuous
. 5 phase-concentration boundary layers still being less than the
Ma = ﬁld_a Pe— (@)”Reqoo film thickness at this point. Thereafter, the boundary layers
a? odCo’ paD meet in the region of minimum film thickness. The result
(@')3Reqo0 pdDiN/D is an acceleration of the local drainage rate in the case of
Peg=———, P=K——7="—"r negative Marangoni numbers, leading to an intensification
HdDd pD'y/Da of the dimple (Figs. 3 and 5), while for posititda-values
Ma represents the influence of Marangoni forc&g a liquid is pulled into this region suppressing dimple devel-

weighted Peclet number for the continuous phase basedopment (Figs. 4 and 6). For the larger negative Marangoni
on Req and the characteristic velocity,/i., and weighted number(Ma = —1), final drainage rates are two orders of
by the factor &)°. Pey represents a Peclet number magnitude higher than for the same film thickness in the
for the dispersed phase, it governs the relative impor- neutral case, while foMa = +1 drainage is completely ar-
tance of diffusion and convection and in particular the rested. Assuming as discussed in the preceding paragraph,
relative thickness of the concentration boundary layer. that Ma is of order of 10&AC*, this dramatic Marangoni
P, governs the interfacial concentration in the external effect occurs at concentrations differences of a few
region. percent.

The starting point for the computation is taken as the The picture provided by the computations is consis-
maximum value oPe consistent with the requirement af tent both with the pulsed column experiments discussed

to be small, corresponding i@ = 0.1, R = 1mm,og = in Section 1 and with the experiments of Kourio and
25x 1072N/m, ug = 10-3Pas D = 10-°m?/s, yielding co-workers [9,10]. The mass transf& — C strongly
Pe = 250. In the simplest case, in whigly = p, Dq = D, promotes coalescence amd — D transfer reduces it.
andK = 1, this situation then yieldBey = 2.5 x 10* and The latter effect was found by Kourio to be relatively

P = 1. Since—(1/0)(do/dC) is of order 1, the value dfla weak, however, drainage times fat — D transfer are
explored in the present simulations (once mafe= 0.1) greater, but of the same order, as those in the absence
correspond ttMa = —100AC*. of mass transfer. Additional computations, using other

In the absence of mass transfer, Fig. 2 shows the proceswvalues of the four parameters, suggest that the arrest of
of film formation which involves flattening followed by the drainage in the present case is only temporary (at higher
development of dimples. In the presence of mass transfer, thetime the equilibrium between the two phases is reached),
effects are illustrated in Figs. 3 and 4, which may be com- final drainage rates being close to those in the absence of
pared with the neutral case (Fig. 2). The resulting drainage mass transfer. As the overall drainage time is dominated
rates, in the presence of mass transfer, are shown in Figs. By the final stages in many cases, this time is only mildly
and 6, together with the neutral case and other parametersincreased

h* 0.1

-4 -3 -2 -1 0 1 2 3 4

Fig. 2. Dimensionless film thickneshk?, as a function of dimensionless radial positioh, and dimensionless timé&, in the absence of van der Waals
forces and mass transfer.
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Fig. 3. Dimensionless film thicknesk?, as a function of dimensionless radial positioh, and dimensionless timé;, in the presence of mass transfer
for Ma = —1, Pe= 250, Pgy = 25000 andP =1 (D — C).

3.2. Expression of the models | and Il in transformed where F1 and F,> denote the instantaneous drainage rate
variables relative to that in the absence of mass transfer.

Expressed in terms of transformed variables used in the3.3. Drainage in the absence of mass transfer: the value

numerical simulations (12) and (15) become of k.
ky dhpi, -1 Ma _F (12%) The next step is to obtain the valuelaffrom numerical
o2 drr - A+ Pyt b results in the absence of mass transfer, for which (12*) and
2hmln ( + ) min
(15*) reduce to
ke dh* Ma Pét/2 1 dn* 2
T T T s pyriz — 2 159 = (17)
2nts 21+ P)t hic. dt k1
10 F 3
1 C =
he 01 E
: — = :
----- t*=10
0,01 3 [T 3
e it t* =30 ]
N t¥ =35 ]
1 1 1 1 | 1 1
-4 3 2 -1 0 1 2 3 4

Fig. 4. Dimensionless film thicknesk?, as a function of dimensionless radial positioh, and dimensionless timé, in the presence of mass transfer
for Ma= 1, Pe= 250, Pgg = 25000 andP =1 (C — D).
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Fig. 5. Dimensionless minimum film thickneds;; ., versus dimensionless
time, t*, in the presence of mass transfer, for different valuesViaf

Pe, Pey and P, in the case of mass transfer occurring from dispersed to
continuous phase.

10 pr T T T T
1 F 3
) [ ]
min 0,1 E- -E
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0 20 40 60 80 100 120
t*
a b c d
Ma 0 1 05
Pe 16 250 250
Pe, - 4756 2510* 2.510*
P - 1 1 1

Fig. 6. Dimensionless minimum film thicknesgs,; , versus dimensionless
time, t*, in the presence of mass transfer, for different valueMaf Pe,

Pey and P, in the case of mass transfer occurring from continuous to
dispersed phase.

133

Table 1
Variation of .. and related quantities during film drainage. Therigin

has chosen to correspond with the onset of flattening araupgd= 0.28

t en h*min r;ﬂn 7dh*min/dt* 7(1/h:12in)
(dnt ;. /de*)
—4 2.35 2.35 0 2.05 0.371
-3 1.051 1.051 0 0.7399 0.670
-2 0.5723 0.5723 0 0.2915 0.890
-1 0.3757 0.3757 0 0.1285 0.910
0 0.2830 0.2813 0.451 0.07289 0.921
10 0.1246 0.06587 1.187 0.005111 1.178
20 0.01012 0.03969 1.187 0.001415 0.898
30 0.08894 0.02974 1.187 0.0007075 0.800
40 0.08085 0.02421 1.187 0.0004512 0.770
50 0.07476 0.02033 1.187 0.0003343 0.809
60 0.06991 0.01734 1.187 0.0002674 0.889
70 0.06586 0.01492 1.187 0.0002192 0.985
80 0.06239 0.01293 1.187 0.0001818 1.087

The results (Table 1) indicate thét/ h;‘nzin)(dh;m/dt*) is
indeed fairly constant, tough a slow oscillation is observable.
This may be due to the fact that the value/df;,, from
which the value of d . /dt* were computed, are those in
the grid point having the smallest’, which may or may
not be close to the exact location of minimdrh Following
flattening, the mean value Ql/h;‘nzin)(dh;m/dt*) is about

0.926, corresponding to, = 2.16.

3.4. Drainage in the presence of mass transfer

3.4.1. Transfer from dispersed to continuous phase

Table 2a and b present the results for two valueMaf
—0.5 and—1 for the above values d?e, Peg and P (250,

2.5 x 10* and 1, respectively)Fnum denotes the instanta-
neous value of & . /dt*, relative to that in the absence of
mass transfer (calculated from numerical simulatiorjs),,
andrj.i, denote the respective radii at whibh exhibits a
minimum anddCp/ar a maximum.

While the numerical values exhibit a certain oscillation,
more pronounced for the largkta-value, it is clear that they
correspond well with model | in the later stages of drainage.
The poor initial correspondence may be ascribed to the fact
that concentration boundary layers have barely met, so that
the approximation of equilibration between film and drop is
not yet applicable. This effect is weaker for smaller value of
Pe, the initial thickness of the concentration boundary layers
being (Appendix C):

oo L(_maD 1
2 Reqa(a’)5 2Pel/3

Table 2c—e provides additional data for different values of
the parameter$e Pegy and P. The results again provide
evidence for the validity of model I if allowance for the nu-
merical oscillations is made. In addition, Table 2e confirms
that the correspondence with the model is observed earlier
for smallerPe-value.

(18)
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Table 2

Comparison of the instantaneous accelerator fagtqr,, due to mass transfer from dispersed to continuous phase with the Valwssd F, obtained
from the approximate models | and Il

heen hin —dhy,,/dt* Timin Tdemax t Frum F1 Falk2 =1)

(@) Ma= —0.5,Pe=250 Pgy =25x 10*, P =1

2.35 2.35 2.05 0 -4

1.05 1.05 0.730 0 -3

0.570 0.570 0.290 0 -2

0.375 0.375 0.129 0 -1

0.282 0.280 0.0730 0.450 0 1.01 1.89

0.231 0.218 0.0500 0.734 1.190 1 1.05 2.15 2.98

0.200 0.175 0.0400 0.950 1.320 2 1.41 2.43 2.40

0.180 0.142 0.0264 0.950 1.320 3 1.41 2.76 2.14

0.165 0.116 0.0220 1.065 1.450 4 1.77 3.16 1.99

0.155 0.0970 0.0200 1.190 1.450 5 2.30 3.58 1.89

0.148 0.0970 0.0148 1.190 1.450 6 1.70 3.58 1.81

0.144 0.067 0.0100 1.190 1.450 7 2.41 473 1.75

0.141 0.0540 0.0147 1.320 1.450 8 5.44 5.67 1.70

0.140 0.0410 0.0100 1.320 1.600 9 6.42 7.10 1.66

0.140 0.0330 0.0070 1.320 1.600 10 6.94 8.58 1.63

0.142 0.0266 0.0047 1.320 1.600 11 7.17 10.4 1.60

(b) Ma= —1,Pe=250Pgy =25x 10", P =1

2.35 2.35 2.05 0 -4

1.05 1.051 0.74 0 -3

0.570 0.570 0.292 0 -2

0.370 0.375 0.130 0 -1

0.280 0.280 0.0730 0.450 0 1.01 2.79

0.230 0.220 0.0510 0.730 1.190 1 1.14 3.27 4.95

0.190 0.170 0.0420 0.950 1.320 2 157 3.94 3.79

0.180 0.140 0.0350 1.00 1.450 3 1.93 4,57 3.28

0.170 0.100 0.0230 1.00 1.450 4 2.48 6.00 2.98

0.160 0.0830 0.0210 1.19 1.450 5 3.29 7.02 2.77

0.150 0.0630 0.0260 1.32 1.450 6 7.07 8.94 2.61

0.150 0.0420 0.0150 1.32 1.600 7 9.18 12.9 2.49

(c) Ma= —1,Pe=250Pg =225x 10°, P =1

0.282 0.280 0.07289 0.451 0 1.01 1.89

0.154 0.106 0.0150 1.06 1.32 5 1.44 3.36 1.89

0.131 0.0543 0.0063 1.19 1.45 10 2.31 5.60 1.63

0.136 0.0159 0.0064 1.32 1.45 15 27.3 16.7 151

(d) Ma= —1, Pe= 250, Pey = 2.25x 1C°, P = 3

0.282 0.280 0.0731 0.451 0 1.01 1.45

0.154 0.107 0.0148 1.06 1.32 5 1.40 2.17 1.44

0.127 0.0586 0.0058 1.19 1.45 10 1.82 3.13 1.31

0.121 0.0351 0.0050 1.32 1.45 15 4.38 456 1.26

0.125 0.0198 0.0028 1.32 1.45 19 7.71 7.48 1.23

(e)Ma=—1,Pe=16andPgy = 4756 P =1

0.276 0.273 0.0838 0.541 0 1.21 2.83

0.221 0.201 0.0630 0.839 1.32 1 1.68 3.49 4.95

0.188 0.147 0.0512 1.06 1.45 2 2.56 4.40 3.79

0.169 0.106 0.0353 1.19 1.59 3 3.39 5.72 3.28

0.157 0.0754 0.0274 1.32 1.59 4 5.20 7.63 2.98

0.151 0.0527 0.0336 1.45 1.74 5 13.1 10.5 2.77

0.149 0.0298 0.0136 1.45 1.74 6 16.5 17.8 2.61

3.4.2. Transfer from continuous to dispersed phase Results forMa = 1, Pe = 250, Pgy = 2.5 x 10* and
Table 3a presents the results for the set paraméfters: P =1 are presented in Table 3b. According to modeF}H,

1,Pe = 16,Pey = 4756 andP = 1. The later stages of is negative (i.e. Marangoni effects causgg,, to increase)
drainage correspond reasonably well with model II, taking if 0 < * < PdMa/2ko(1+ P)]2. In the case considered in
k2 = 1. Based on the few data points in this region, it is not Table 3a, range of times for whidky is negative is small:
possible to refine the value &. 0 < t* < 1, takingko = 1. For the case treated in Table 3b,
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Table 3

Film drainage for mass transfer from continuous to dispersed phase

héen hin —dhpy,/dr "hmin récmax t Frum F1 Faka =1)
(@) Ma=+1,Pe=16,Pgy=4756 P =1

0.289 0.288 0.0641 0.366 1.32 0 0.835 -0.74

0.173 0.165 0.00907 0.734 1.450 5 0.360 —2.03 0.553
0.108 0.106 0.00400 0.451 1.450 15 0.384 -3.7 0.742
0.0781 0.0761 0.00231 0.451 1.59 25 0.431 -5.6 0.8
0.0604 0.0563 0.00167 0.541 1.59 35 0.569 -7.9 0.831
0.0487 0.0415 0.00122 0.635 3.75 45 0.765 -11 0.851
0.0429 0.0334 0.00106 0.734 4.01 52 1.03 —14 0.861
(b) Ma= +1,Pe=250,Pey =25x 10", P =1

0.282 0.280 0.0730 0.450 0 1.01 —0.779

0.154 0.133 0.0074 0.949 131 5 0.337 —2.76 —0.766
0.120 0.114 0.0031 0.630 131 10 0.258 -3.39 —0.249
0.101 0.101 0.0027 0.21 1.31 15 0.259 —-3.95 —0.020
0.0900 0.0900 0.00124 0 131 20 0.165 —4.56 0.117
0.0880 0.0880 —0.000 0 131 25 —0.00 —4.68 0.210
0.0930 0.0930 —0.000 0 1.31 30 —0.00 —4.10 0.278

however, Pe is much larger and the range of negative It is evident that for sufficiently small values of the
F»-value becomes O< r* < 15.6. Once more neglect- Marangoni parametdvla, or sufficiently large value of the
ing the initial period of drainage, the numerical results do parameter determining boundary layer growth rates,
qualitatively reflect this expectatiof,, m being falling be- the zone of minimum film thickness will no longer be able
low zero in the final stage of the computations. The fact to keep up with the radial expansion of the zone of maxi-
that F,ym does not become strongly negative suggests thatmum interfacial concentration gradient and drainage will be
positive values would soon reappear were the computationdescribed by model Il rather than model I. No information
further pursued. While a better match between model and on the location of this transition in parameter-space is pro-
numerical results could be obtained by reducing the value vided by the available numerical results. It is conceivable
of k> (thereby increasing th& range for which the model  that when the transition results from a very snid-value,
predicts negativéd-,-value), this is probably not justified the associated Marangoni effects are so weak as to be
since the concentration boundary layer thickness is proba-negligible according to either model. Likewise, very small
bly of the same order as the film thickness throughout the values ofPe might arise as a result either of smalivalues
computation in view of the large value Bk (see Eq. (18)) (gentle collisions) or of largeuqg/u-values (largeuyD).

combined with the large values bf; . Predicted coalescence probabilities would then in all likeli-
o hood remain closer to 1 or 0, respectively, whichever model
3.4.3. Range of applicability of models I and Il is applied. It is thus possible, though undemonstrated, that

While the numerical results provide satisfactory support model | suffices for all practical purposes whenever transfer
for model I in the cases of transfer from dispersed to con- js from dispersed to continuous phase and this is assumed
tinuous phase, a problem remains: model Il contains no to be the case in what follows. Numerical exploration of
specific assumptions about the direction of transfer and the transition conditions is, however, desirable.
might be expected to apply in all cases. The explanation |n the case of mass transfer from continuous to dispersed
is provided by the value of; ;. and rg..., illustrated  phase, thinning is suppressed by Marangoni forces and there
vividly by the results in Table 2e, as the region of maximum s no driving force for the region of minimum film thickness
interfacial concentration gradient move radially outwards to follow that of maximum interfacial concentration gradi-

the location of minimum thickness follows. The associated ent. Model Il should therefore describe (the late stages of)
physical picture is as follows. As soon as the location of drainage in all cases.

maximum Marangoni forces moves beyond the edge of the
film, thinning accelerates in this region, which is promptly . i
incorporated in the film, so that the region of the maxi- 4 Thecritical film rupture
mum Marangoni force permanently coincides with that of
minimum film thickness as assumed in model I. The fact

thatrj.ax IS Slightly larger than . is explained by the ) )
fact that the Marangoni force per unit volume of the filmis  APPIlying the same approach as in the absence of mass

given by (2h)(35/3r), so that its maximum value is devel- transfer [8], the critical film-rupture thickness in the case of
oped at smalleh*-values (and hence*-values) than that Marangoni accelerated film drainage should be given by:

of (da/ar) (or equivalently, §Co/or)). Fy~ Fp+Fs (19)

4.1. Model |
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whereF,, denotes the radial force per unit volume of film 5. Drainage time
due to the reduction of the film tension associated with van

der Walls forces: 5.1. Model |
1AY A
Fu~p—"~ 5 (20) Eq. (12) may be expressed as
. . . hy dh hm
where X is the film tension £ 20 — A/47h?), A the T =it (27)

Hamaker constant. Substituting (2), (10) and (20) into (19),
an implicit relation for the critical film-rupture thickneds,
is obtained:

whereT = uga/2Acln the constant case (a constant) and
for hy, (27) integrates to give

t=TIn (M)
1+ (hm/ hita)

wheret denotes the time to drain from the onset of flattening
to the thickness$.

(21) (28)

wherehc o denotes the value df; in the absence of mass

ransfer The time ¢, to drain fromhg; to he follows from (21) and
AReq 13 (27). To obtain an indication of the influence of Marangoni
he ~ 8ro (22) forces, the drainage timé; o, is compared with; for the

casehc € hym < hfat, in which an explicit expression is
This approximate analytical expression were compared by provided by (23) and (27)
Saboni et al. [7] with complete numerical simulations in the I
(i)

presence of van der Waals forces and in the absence of masg = ~T In
The drainage time in the absence of mass transfer is obtained

transfer. It was found that expression (22) provide a good
In the case of Marangoni domination in the final stages from (23) and (27) in the limit ofiy — 0

(29)

first approximation for the critical film-rupture thickness.
of drainage(hc < hm), (21) reduces to

h hg,o i A \Y?
"\ (87TAU>

4.2. Model Il

(23)

An approximate expression for the effective critical
film-rupture thickness is provided by the expression in the
absence of Marangoni effects

kA 1/3
he ~ (3—%“) whereks ~ 1 (24)

8no

in which o is replaced by the effective value obtained from
(15)

Rqu(T
~ 1+ —— 25
oeft 0 ( N 2kza<Dt>1/2> (29
combination of (24) and (25) now yields
= 26
8710h§ 2ko0 (Dt)1/2 (26)

Expressed in terms of transformed variables (24) become

Ma Pe-/2
2ka(1+ P)(1)1/2

kzA*

203

(26%)

whereA* = A/4ro R3(a')®

h
teo =T (30)
hc,O
Accordingly
[C 3 ]’lc 0 ( hM >
— = —-——In| — 31
fco 2 hm heo D)

This expression indicate earlier rupture for - C mass
transfer. For instance, ifim/hco is equal to 10/t o) is
equal to 0.35.

5.2. Model Il

The value of the timdg, to drain to rupture in the presence
of mass transfer follows from (15*) and (26*). In the limit
of no mass transfer the second term in the RHS of (15*) and
(26*) disappears

k1
2h% =1do (15%)
c.
k3A*
52 g (260%)
3
th,o

Dividing (15*) by (1%*) and (26*) by (26&*) now yields:
1 4

M~ 2
1 Z
E T ¢
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with
he
He = —— 34
°= e (34)
and
Ma Pé'/?
2 (35)

" 2ko(L+ P)(13 )Y

wheretc o follows from (1%*) and (2&*), and f=t¢/tc 0.
This expression indicates later rupture or— D mass
transfer. For a given value of the paramefe(32) and (33)
are readily solved iteratively fof (and H¢). For example,
taking Hc = 1 as a first approximation, (32) provides a
quadratic equation foft/2 and (33) provides a better ap-
proximation toHg, etc. For instance, taking = 0.5, the
calculations givef = 1.55 andH; = 1.08, while forZ =
10 the calculations givg = 102 andH . = 1.26.

5.3. Coalescence probability

In the presence of mass transfer, the expression for the

coalescence probability [8,10,11]

P= exp<—%> (36)
|
becomes
P= exp(—f ;O) (Po)’ (37)
I

wherePq is the coalescence probability in the absence of
mass transfer. For a giveRy [8], expression (37) can be

used when mass transfer is from dispersed to continuous
phase and also if mass transfer is from continuous to dis-“ =

137

return to the drainage rate in the absence of mass transfer.
The range of applicability of each model is considered and
expressions for the film rupture required for the coalescence
probability are developed which may be used in two phase
flow simulations.

Appendix A
A.l. Interface concentrations

The first interface condition assumes quasi-equilibrium
solute partition

dCyq

—— = K = constant A.la
ac (A.la)
or

Cy= K(C +c¢) (cisaconstant (A.1b)

A.2. Influence of the velocity induced by mass transfer on
the mass flux trough the interface

The barycentric mixture velocity, is defined as

pu = paUA + pUB (A.2)

where A refers to solute and B to solvent (be this the contin-
uous or the dispersed phase). With respect a reference frame
translating with a material point on the interfac§, 0, u,],
where thez-direction is that of the outward normal. At the
interface(u;)g = 0 and (A.2) yields
z=0

—(uz)a = Co(uz)a, (A.3)

persed phase, making use of appropriate expressions for the

acceleration/deceleration factor

6. Conclusion

Two simple analytical models for predicting the influence
of interphase mass transfer on coalescence in liquid-liquid

The difference betweenuf)g and (,)a is given by Fick’s
law
aC

= _—pD=
uz] P 9z

m = pal(uz)a — or

le
Uug] =—D—

Cl(uz)a — Py

(A.4)

dispersions were developed. The models describe drainageclimination of (U;)a from (A.3) and (A.4) now leads to

and rupture of partially mobile films during coalescence in

the presence of mass transfer. The results obtained fromuz)o = —

the analytical models were compared with a more sophisti-
cated model (numerical simulation results); within a certain

limit of accuracy, the two sets are in agreement. In the case

of Marangoni-accelerated drainage, corresponding typi-

cally to mass transfer from the dispersed to the continuous

phase(D — C), expressions have been derived for the Where

time required for drainage to rupture. Even relatively small
concentration differences are predicted to dramatically ac-

celerate drainage. In the reverse case of Marangoni-retarded

drainage (mass transfer from continuous to dispersed
(C — D)) the time required for drainage to rupture is en-
hanced. At large times, the model Il predicts an asymptotic

b o (A5)
1-Co oz
which, with the help of (A.3) leads to
, 0Cq aC
D). =pD'— A.
pdDy—— 9z =p e (A.6a)
D
- A.6b
1-Co (A.6b)
an
/ Dy
= A.6
47 1 K(Co+o) (A.6¢)
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Appendix B
B.1. Diffusion at a dilating interface

As preliminary, consider a semi-infinite region of liquid

with constant solute concentratid®y, at its plane boundary
and constant concentratioBy, atz = co, wherez denotes

A. Saboni et al./Chemical Engineering Journal 88 (2002) 127-139

Appendix C

C.1. Concentration boundary layer thickness in the region
outside the film

Once the separation of two drogs, becomes less than
28, the boundary condition; = constant= Co, atz = oo,

distance along the normal to the boundary. If the only source ceases to be a good approximation a@g d) rises/falls to-

of flow is that induced by a uniform dilation of the bound-
ary, which is transmitted by viscous action to the adjoining
liquid.

1DA . 1
ADt T
whereA is area of material element of the interface. Then
the zcomponent of the velocity follows from continuity

(B.1)

ld_A — i aﬂ _% (B.2a)
A dr ax ay 0z

z
u;, = —7 (B.2b)

Choosing the origin in a given material point on the bound-
ary, the diffusion equation is

aC

S Huve = DV2C (B.3)
at any point (0, 02) becomes

aC  z9dC d°C

EAN A A (B.4)
ot T 3z 372

In the special cas& = oo (non-dilating boundary), (B.4)
can be integrated analytically

£-C = 1—erf(—Z )
Co— Cx 24/Dt
For a steady dilationT = constantdC/dt = 0), (B.4)
yields
C—-Co
Co— Cx

(B.5)

—1—erf (%ﬁ) (B.6)

wards Cq,«0), While the interfacial concentration outside the
film is still given by (B.8). The onset of Marangoni effects,
driven by the resulting variation of interfacial tension, thus
corresponds to

hs ~ 28 (C.1)

The value ofs: Depending on whethehs is smaller or
larger thanhgy (the film thickness at which the drops be-
come flattened), the value efdh/dt can either be approx-
imated as constant, corresponding to the approach velocity
of centers, or decreasing as~ 2, corresponding to the
drainage law for partially mobile, flat film [8]. In the former
case—h~1(dh/dt) increases as™1, in the latter it decreases
asht?l,

At the transition pointis ~ hiyat,

1dn
——— = constant

h dt
Further from (B.2a,b)
1 Au,  1dh
T A, h dr
an application of the analytical solution for constarthen

—h

yields
5= xD —Dh

"\ 2 dhy/dr dh /dt
Forhs > hyat, 8 decreases with time and its value will there-
fore lag somewhat behind that given by (C.3). Conversely,
for hs < hgat, 8 will be somewhat smaller than the value

given by (C.3). In both cases, however, (C.3) should be valid
as an order of magnitude estimate.

(C.2)

(C.3)

The preceding considerations can be extended to a steadily UP to the point at which the film thickness is attained,
dilating interface between semi-infinite regions of immis- dh/dt will be approximated by the drainage law for drops
cible liquids. The concentration distributions in each phase Of constant interfacial tension. For cases in which the drops

will again be given by (B.6), the valu€y and Cy o be-
ing determined by the interface conditions (A.1) and (A.6).
Making use of (B.6), (A.6a) becomes

pdD§(Cd,0 — Cd,00) = pD'(Co — Coo) (B.7)
which together with (A.1) yields
Coo + ¢+ P(Cd o)/ K
= . B.8
Co+c TP (B.8)
With the transformed partition parameter given by:
D/x/D
P = M— (B.9)
pD'/Dqg

are already flattenethfa; > hs), this law is roughly [8]

LN ——Z(Zna/Req)S/z 2 (C.4a)
dr TugF1/2 '

or

dh Ao e (C.4b)
dr ndReqa

where a is a measure of the radius of the filnk;
ma20/Req, WhereF is the drop interaction force. Combi-
nation of (C.3) and (C.4) yields
(25)2 11gDaReq

h

oh3

(C.5)
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The value of

1/3
h,g~28~< )

Expressed in terms of the transformed variabiigsand &
become

mdDaReq
o

(C.6)

1/3
1 (—“dD ) ~ L (C.7)
2 \ Reqo (a')® 2Pel/3
1/3
oo (D N\ L1
h <Reqa (a,)5) RIE (C.8)
Appendix D

D.1. Concentration boundary layer thickness in the region
outside the film

The concentration boundary layer thicknessin the re-
gion outside the film depends on the dilation history of the
interface, which in turn depends on th&/Dt, h being linked
to the interfacial area of material eleme8t,via constancy
of the element’s volumehS

Dh/Dt is given by

Dh  oh oh
D ar  ar
The film velocity, u(r), in the outer region fellows from

continuity if h(r) is approximated as corresponding to a film
of negligible thickness, beyond which drops are undeformed

(D.1)

h=0 r<a (D.2)
2 _ 2

i , r>a (D.3)
Req

2xruh = 7r(r2 — aZ)V, r>a (D.4)

whereV denotes the instantaneous approach velocity of the
undeformed portions of the drops
oh
ot

(D.5)

139
Combination of (D.1)—(D.5) now yields
Dh r2—a?_r
—=V[-1 2— D.6
Dt < + 2rh Req) (D-6)

Indicating the absence of dilatioh &nd hences constant)
If the continuous phase-concentration boundary layer
thicknessg, is defined as

<8C) Cso — Co
z=0

9z 5
then its value in the case of non-dilating interface is obtained
by differencing (B.5)

5 ~ /(DY)

and the film thicknesdys, in the region where the concen-
tration boundary meet is thus given by

hs ~ 2,/(Db)

(D.8) ignores the fact that at the onset of flattening= 0),

8, is already non-zero. The associated error is small, how-
ever, as the overall drainage time is dominated by the final
stages of drainage for which (D.8) is acceptable.

(D.7)

(D.8)

(D.9)
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